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Experimental measurements of the annihilation rate of a positron in fluid xenon show that it exhibits
an anomalously nonlinear dependence on the fluid density. Recent path-integral Monte Carlo simula-
tions of the system suggest that the nonlinearity results from the formation of xenon clusters which sur-
round the positron at moderate densities. In this paper we investigate the ability of the analytic
reference-interaction-site-model-(RISM) polaron theory to replicate these results, and provide richer in-
formation concerning the e *-xenon system over a wider range of circumstances. Two distinct closures
of the RISM equation are considered, as well as the effects of altering the attractive part of the potential.
The main results are that, when coupled with the hypernetted-chain closure, the theory qualitatively
reproduces the main features of the experiments and Monte Carlo simulations, but underestimates the
cluster density and confinement of the localized positron.

PACS number(s): 05.30.—d, 71.60.+z, 78.70.Bj, 36.10.Dr

I. INTRODUCTION

Positron annihilation has been an interesting field since
the early 1960s when it was realized that the annihilation
photons carried useful information about the structure of
the material in which the positron annihilated. Because
of the complexity of the quantum states of the positron,
many aspects of positron annihilation in fluids have not
been understood well. Recently, Miller and co-workers
carried out path-integral Monte Carlo (PIMC) calcula-
tions of positron and postronium annihilation in xenon at
different temperatures and fluid densities [1,2]. Along
with the earlier PIMC studies of an excess electron in
helium and xenon by Coker, Berne, and Thirumalai [3],
these simulations offer some insights for a better under-
standing of the behavior of these light particles in simple
fluids. In this paper we present an adaptation of the
reference-interaction-site-model—polaron theory to the
problem of positron localization in xenon over a variety
of fluid densities p at a given temperature (T =340 K)
and compare its predictions with its PIMC counterpart.

Reference-interaction-site-model (RISM) theory was
originally introduced by Chandler to study the structure
of molecular fluids [4]. Since the introduction of the path
integral by Feynman [5], physicists have known how to
represent a quantum particle (QP) by a classical ring po-
lymer with p (p — o0 ) classical interacting harmonic os-
cillators (classical isomorphism). Chandler and co-
workers recognized that, in this form, an excess quantum
particle that has thermalized in a classical fluid could be
described within the context of classical fluid theory. By
joining Feynman’s polaron approximation [5(b)] with the
RISM theory, they developed an analytical representa-
tion of the particle-fluid system which they used to study
the localization of a hard-spherical quantum particle in a
simple fluid [6]. As in the case of a classical fluid, for the
purposes of computation RISM theory requires a closure
assumption. In their original studies Chandler et al. im-
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posed the PY-like (Percus-Yevick) closure [7] for the
correlation between the quantum particle and a fluid
atom. Later the approach was modified by Malescio and
Parrinello in their study of an electron solvated in a mol-
ten salt [8]. Because here the quantum particle interacts
with postassium and chlorine ions through long-range
Coulomb potentials intead of a hard sphere, they selected
a hypernetted-chain- (HNC-) like closure [9]. More re-
cently, a closure was proposed and applied to the prob-
lem of the hydrated electron [10]. By comparing the pre-
dictions of RISM-polaron theory with their computer-
simulation counterparts, one finds that the theory offers a
good foundation for the understanding of quantum parti-
cle localization in fluids.

There are some other theories available for modeling
quantum particle localization in fluids. Notable among
these is density-functional theory (DFT), which provides
a fairly successful description of some aspects of the lo-
calization phenomena [11]. DFT is essentially a mean-
field theory that characterizes the system by a single, op-
timal wave function representing the QP, and a smooth,
local, nonuniform fluid density representing its environ-
ment. Although fluctuations play an important role in
the localization process, DFT does not take them into ac-
count, and consequently fails to give a correct picture of
localization. For example, in DFT the existence of local-
ized solutions abruptly turns on and off at specific values
of the fluid density, whereas experimental data show a
continuous transition from extended to localized
behavior. Although one mean-field approximation is in-
volved in RISM-polaron theory [6], it does take some
fluctuations into consideration and therefore the picture
of localization in terms of the RISM-polaron theory is
quite different from that of density-functional theory.

The only numerically exact way to treat the present
system is via computer simulation. Of the two major ap-
proaches, PIMC and quantum molecular dynamics, the
former is more successful for equilibrium properties be-
cause it does not require truncation of the state space or
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“regularization” of the interaction potential. But PIMC
is very CPU intensive and can only test a few points, so it
is difficult to obtain a good picture of the predictions over
the complete range of density and temperature. Mean-
field theory only gives nontrivial solutions over a finite
range of temperature and density, and certainly fails in
the transition region from localized to extended states,
where fluctuations dominate. Currently the RISM-
polaron theory is the only existing analytical theory that
covers the complete range. Therefore it is desirable to
test the RISM-polaron theory against known PIMC re-
sults. This work serves two purposes: to display the gen-
eral picture of positron localization in xenon, and to
show the usefulness of the RISM-polaron theory for this
sort of problem.

The paper is organized as follows: The RISM-polaron
theory for a positron in xenon is presented in Sec. II; the
computational method is described and the numerical re-
sults are presented in Sec. III; the results are interpreted
and conclusions are summarized in Sec. IV.

II. RISM-POLARON THEORY OF
A POSITRON IN XENON

We consider a single positron dissolved in fluid xenon
in the adiabatic approximation in which the positron is
treated quantum-mechanically and xenon atoms classical-
ly. From a standard imaginary-time path-integral formu-
lation [5(a)], this system is identical to a classical ring po-
lymer dissolved in the solvent and can be described by the
RISM-polaron theory. The basic setup for deriving the
RISM-polaron approximation from the discrete ring-
polymer model is described by Chandler and co-workers
in Ref. [6], and we proceed from there. The RISM equa-
tion

ph(r)=fdr’fdr”co(!r—r’l)c(lr’-—r”i))((lr"I) (1)
with a closure
c(r)=F[h(r)] ()

provides the connection between the positron-solvent
direct-correlation function c(r) and the positron-fluid
pair-correlation function 4 (7). In Eq. (1), x(7) is the sol-
vent density-density correlation

x(r—r'|)=(8p(r)dp(r")) , (3)

which represents the structural influence of the fluid on
the state of the light particle and «o(r) is the zero-
frequency component of the polymer probability density
function w(r,7):

= -1 B
o(n=pm~" [ Tdro(rn @)
where
olr,t’;i, )=o(|lt—r'|;i —j) s ol|lrt—r'|;7—7')
(p—>o) (5)

represents the polymer probability density for finding po-
lymer sites i and j near r and r’, respectively, in the limit
of a continuous chain.
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In (2), F[h] denotes a functional of /4 (r) and must be
approximated in practice. One closure being used widely
in simple atomic fluids is the so-called HNC closure,

c(r)=exp{—BV(r)+[h(r)—c(r)]}—[h(r)—c(r)]—1,
(6)

which is a good approximation for fluids with a long-
range interatomic potential. We accept (6) as a closure to
the RISM equation (1) applied to our system, where V (7)
is taken as the positron-solvent interaction.

The interaction between a positron and a xenon atom
is not known exactly. For their PIMC calculations [1],
Worrell and Miller used the following analytical potential
to describe the interaction:

V(r)=%[a exp(—c;r)+(1—a)exp(—c,r)]

l—exp[—-(r/ro)]6
—a

o , %)

which is based on Schrader’s work [12] on constructing
the potential from the Hartree-Fock potential of the iso-
lated xenon atom and a contribution produced by the
large atomic polarizability. The static polarization and
the atomic number of the xenon atom are, respectively,
a=26.92 a.u., and z =54. The values for the other pa-
rameters in (7) are a =0.336 and, in atomic units,
¢;=1.360, ¢, =6.280, and r,=2.15.

The second term of the potential is due to the polariza-
tion of the xenon atom and is the dominant part at large
distance. Since the xenon atom is easily polarized, the
long-range potential must play a crucial rule and be treat-
ed carefully. In particular, we expect that c (), the direct
correlation function of the positron with the fluid atoms,
takes the form

af{l—exp[—(r/r)°]}

2t

c(r)=—p

a
——B— 8
B (8)

at large distance.
Following Malescio and Parrinello [8], we write

c(r)=cy(r)tcir), 9)

where ¢ (r) and c¢;(7) are the short- and long-range parts
of the direct correlation function c¢(r), respectively. In
this work we simply take (8) as c,;(r) for all ». This choice
will be discussed further below. Thus, if we know ¢,(r),
we will be able to obtain all the information about the
positron in the fluid.

To obtain c¢,(r), we consider the decomposition of ¢ (r)
in (9). The RISM equation (1) can be written in the form

ph(r)= [drdr"o(|r—r'|)c (|’ =" x(r")
+fdr’fdr"w(lr—r’l)c,(lr'—r"l)x(r")
={c,)+(c,) . (10)

Denoting the short-range part (the first term) of the po-
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tential (7) as ¥V, (r) and noting that ¢ (r)=c,(r)+c;(r) and
¢,(r)=—pBV,(r), the closure for c,(#) and A (r) is given in
the form

e (r)=exp{ —BV (r)+[h(r)—c,(r)]}
—[h(r)—cy(r)]—1
=exp[ —BV,(r)+{c;)+6(r)]
—(e))—0(r—1, (11)

where 0(r)=h (r)—c,(r)—{c; ), which is just the closure
used by Malescio and Parrinello for their solvated elec-
tron in a molten salt [8]. It is interesting to note that
¢,(r) and V,(r) are not explicitly involved in (11). For
given w(r,7) and x(7), a solution for 4 (r) and ¢,(7) can be
found from Egs. (10) and (11).

The remainder of the theory concerns the polymer
probability density function w(r,7). In the polaron ap-
proximation, it can be determined self-consistently from
the following equations:

Bk r)=exp |—k? 3 o7
' P n (:#O)Bmﬂi_’_’y’z

ynz(sﬁzﬂﬁ)_lfowdk ke 2(k)x(k)

, (12)

XfBﬁdT(l—COSQnT)C_O(k,T) (13)
0 ,

for given Y(k) and ¢(k)=c,(k)+c,;(k), where @(k,7),
¢(k), and ¥ (k) are the Fourier transform of w(r,7), c(r),
and x(r), respectively, and Q,=2nw/B#A. To speed up
the summation in (12), we follow Fan and Miller [13] to
rewrite it in the form

0(r) s 1—cosQ,
T)= _—

n (7o) BmQ; +7,
1—cosQ,

BmQ;,

s 1—cosQ, 7

ni70) BmQL(BmQ; +y,)
=Q,(1)—Q,(7) . (14)

Q, corresponds to a noninteracting light particle and can
be evaluated exactly,

Q,(r)=(\*/2)r(Bfi—1)/(B#), (15)

n (#0)

where A2=p#%/m is the thermal wavelength of the posi-
tron, m is its mass, and Q, is the correction to Q,. We
will see that including just a few terms in Q, can give
quite satisfactory results.

III. METHOD AND RESULTS
OF CALCULATIONS

Equations (10)-(13) form a self-consistent system. We
start with an assumed set of (y,7,,...,7,) and obtain
the initial @(k,7) from Eq. (12). Then we take 6(r) as the
iteration variable to achieve the convergent solutions for
h(r) and c(r) from Egs. (10) and (11) for the given y’s
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and @(k,7). From Eq. (13) we obtain a new set of ¥’s and
repeat the above procedure until the y’s achieve the re-
quired accuracy.

The iterative solution of Eqgs. (10) and (11) is carried
out via fast Fourier transformation (FFT) techniques on a
grid of N =2'! points equally spaced with Ar=0.03703
A. This also allows the use of the RISM equation (10) in
k space.

ph(k)=a(k)e(k)x(k)
=a(k)e,(k)Y(k)+a(k)e,(k)x(k) (16)

which is simpler in form and easier to use. We require
the error in A(r) at » =0 to be less than 0.001 [A(0)
should equal — 1.0 as the potential (7) is infinite at r =0]
and the quantity
N 172
AO= | [6™ X r)—6™(r))*/N 17

i=1

to be less than 0.001. To accelerate convergence, the Ng
method is used in which the mth iteration input is ob-
tained as a suitable linear combination of the preceding
three iterations [14]. Furthermore, for p*>0.3, we do
the calculation from high to low fluid density, so that we
can use the output 6(r) from the next-higher density as
input to the lower density because we have found that it
was more difficult to achieve convergence proceeding in
the other direction. For densities p* <0.3, we proceed in
the opposite direction. In spite of all of these efforts, be-
tween 10 and 10* iterations are still required to achieve
the stated accuracy in A (r) for a given set of y’s. The 7
integrals in Egs. (4) and (13) are carried out by a self-
adjusting mesh integration program so that an accuracy
of 1073 is guaranteed regardless of the shape of the in-
tegrands [13]. As for the number of y values selected, we
found that there was no significant difference in the final
results when we included the first ten values (n =10) or
the first 30 values (n =30). Fewer than ten iterations of
the entire process yielded at least three-digit accuracy for
the y’s.

To accomplish the present study, we need Y as input.
RISM-polaron theory can only be as good as y. The best
possible ) can, of course, be obtained from Monte Carlo
or molecular-dynamics calculations, but this defeats the
purpose of constructing a theoretical model. The best
candidate seems to be given by the solutions of the
reference-hypernetted-chain (RHNC) equation of simple
classical fluids [15]. Lado, Foiles, and Ashcroft [15] used
the Rosenfeld-Ashcroft procedure to model the bridge
function in the RHNC integral equation with its hard-
sphere values, and choose the sphere diameter so that the
free energy of the system is minimized. The RHNC
equation for simple fluids has also been tested recently by
an alternative computational procedure [16]. The results
given in [15,16] show that the difference between the
solutions of RHNC and the simulation studies are com-
parable to the uncertainties in the simulation data. For
the present calculation, we use the procedure of Lado,
Foiles, and Ashcroft to generate the structure factor S (k)
of the RHNC solution for xenon with a Lennard-Jones
potential (0 =4.0551 A and €=229 K) at T=340 K and
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various densities to obtain Y(k)=pS(k), the Fourier
transformation of y(r).

Figure 1 shows the structure factor S (k) of xenon at
three representative densities. We see that when the fluid
density approaches its critical value (the critical density
p*=po3=0.35 for the Lennard-Jones fluid [1]), S (k —0)
increases. This is a basic feature of real fluids and implies
that the isothermal compressibility becomes large at the
critical point, while a hard-sphere fluid lacks such
behavior. The behavior of S (k) at small k is important in
RISM-polaron theory because @(k,7) is a Gaussian func-
tion in k and therefore values of S (k) at small k are sam-
pled preferentially and contribute more to 4 (k) through
Eq. (16). This supports the experimental observation that
localization is enhanced in the critical region where the
compressibility is large, causing the fluid to respond more
strongly to the presence of the QP. Since we are calculat-
ing at 7=340 K rather than at the critical temperature
T,.=289 K, we have found that S(k =0) achieves its
maximum value at around p*=0.25.

A quantitative measure of the size of the polymer (or
continuous path in the limit p— o) is R (f%/2), the
root-mean-square separation between two points, or
beads, located half-way around the polymer. It is easily
obtained from the second moment of w(r,7=p#%/2),
which yields R (8%/2)=[6Q (8%/2)]'/%. For a free parti-
cle, Ry (B#/2)=3'"?A/2. Therefore

R(B#/2) _ 2R(B#/2)
R (BA/2) 3172

provides a measure of the relative localization of the posi-
tron. In Fig. 2 the relative size P is plotted as a function
of fluid density p* at T =340 K both for the RISM-
polaron calculation and for the corresponding PIMC re-
sults. From the figure we see that the positron with po-
tential (7) is delocalized at low and high densities (P =1)
but becomes compressed at some intermediate values.
The most compressed state predicted by the RISM-
polaron theory is located at around p*=0.25, which
coincides with the density where S(k =0) gets its max-
imum. This state seems to occur at a higher density than
the most compressed state given by PIMC at the same
temperature, which appears to be located just below

P= (18)

4
a: p*=0.30

=3 b: p*=0.15
® c: p*=0.80
8
82 T* =1.4748
e
3
B
g 1 P
7]

0 + | ! 1 1 1

0 2 4 6 8 10 12 14 16 18 20
ko

FIG. 1. Structure factor S (k) for xenon resulting from the
RHNC solutions of Lado, Foiles, and Ashcroft [15].
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FIG. 2. The dependence of P on xenon density at tempera-
ture T=340 K from PIMC and RISM-polaron calculations.
(The RISM-polaron results using only the repulsive screened
nuclear part of the potential [the first term in (7)] is also plotted
(dashed line)).

p*=0.2. Since we only have the PIMC results at a few
points, we cannot be more precise. However, the overall
picture is clear. The qualitative picture presented by the
RISM-polaron theory agrees with the PIMC simulations,
but the positron polymer is less compressed in the
RISM-polaron theory.

We now examine g(r)=1-+h(r), the positron-solvent
radial distribution function, which provides a measure of
the influence of the QP on its local environment. Worrell
and Miller carried out PIMC simulations for p*=0.01,
0.05, 0.15, and 0.5 [1]. The general behavior they found
is that g (»)=0 at small r, then rises rapidly to a strong
peak at the location where the positron potential (7) as-
sumes its minimum value, and decays rapidly afterwards.
The strong peak indicates the formation of a xenon atom
cluster around the positron. This beahvior is reproduced
by the RISM-polaron theory, and we illustrate g(r) for
some representative densities in Fig. 3 (upper graph).

It is worth pointing out that RISM-polaron theory pre-
dicts that, at higher densities, where PIMC simulations
have not been carried out, g(r) undergoes an oscillating
decay beyond the primary peak. Oscillations did not
occur in the PIMC simulations at lower density. This
needs to be examined in more detail by PIMC but,
nonetheless, it seems to be the real behavior. Both the
PIMC and RISM-polaron calculations for an electron in
xenon exhibit a similar oscillation [3,17].

Our calculations do reveal some disagreements be-
tween RISM-polaron and PIMC for low density. To
show this, in Fig. 3 (lower graph) we also plot the value of
the first peak in g(r) versus fluid density. By comparing
this with Fig. 2 we can see that, in the RISM-polaron pic-
ture, there is a direct correspondence between the degree
of polymer compression and the height of the peak of
g(r). The more compressed the positron polymer, the
higher the peak. This correspondence does not occur in
the PIMC simulations, in which the highest peak is locat-
ed at a lower density than the most compressed state.
Furthermore, the peak given by PIMC is generally higher
than that of RISM-polaron theory. In addition, we no-
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C: p*=0.60
2

d: p*=0.80

a(n

PIMC

Value of first peak in g(r)

RISM

0 L 1 I I ! I 1
0 01 02 03 04 05 06 07 038

p*:po’3

FIG. 3. Upper graph: positron-xenon radial distribution
function g (7) for some representative fluid densities at 7"=340
K from RISM-polaron calculations; lower graph: the depen-
dence of the value (height) of the first peak of g (7) on fluid den-
sity at 7'=340 K from both PIMC and RISM-polaron calcula-
tions.

tice that the radial distribution function plotted in Fig. 3
decays much more slowly than that obtained from PIMC
[1]. In other words, the first peak is broader in the
RISM-polaron theory. This might be considered as com-
pensation for its weaker first peak, so that the size of xe-
non clusters predicted by each model may be approxi-
mately equal. To determine this requires a correlation
function, or local density, in which the center of mass of
the polymer is fixed at the origin. While this is readily
available in PIMC, it is not a natural result of the RISM-
polaron model.

A partial test of the validity of either model can be ob-
tained from a direct comparison of the predicted positron
annihilation rate with the experimental measurements.
The thermally averaged positron decay rate can be evalu-
ated from the Miller-Fan expression [18]

(My=p [drfirg(r), (19)

where f(r) is the electron density of an atom fixed at the
origin. Following Worrell and Miller [1], we take f(r) as
the electron distribution of the isolated xenon atom,
determined here by the Laplacian of the first two terms of
the potential (7) arising from tabulated Hartree-Fock
wave functions for xenon. The decay rates for various
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FIG. 4. Positron decay rate vs fluid density at 7=340 K
from PIMC and RISM-polaron calculations.

fluid densities are given in Fig. 4 for the RISM-polaron
theory and the PIMC calculation. As expected, since the
RISM-polaron theory seems to underestimate the
compression of the positron polymer and the density of
xenon clusters surrounding the positron, the overall mag-
nitude of the decay rate predicted by RISM-polaron
theory is smaller than its PIMC partner. However, the
shape of the curve is reproduced closely. We notice that
the decay rate from the RISM-polaron calculation is not
a monotonic curve in the region p*=0.4-0.6. The ap-
parent dip cannot be confirmed by either PIMC [1] or the
experimental data [19], since they are only determined at
a few densities. It is interesting that DFT calculations
[19] show a similar local minimum in decay rate at 300
K, but it is located at a much lower fluid density.

IV. DISCUSSION AND CONCLUSIONS

As we mentioned above, PIMC is a numerically exact
but time-consuming method, and it is all but impossible
to use it to cover the complete range of the parameters
needed for describing the system. On the other hand,
since its predictions are qualitatively similar to those of
PIMC calculations, the RISM-polaron theory has
demonstrated its ability to describe positron localization
in xenon. It has the advantage of allowing computations
which cover a much larger range of parameters using
present hardware. As demonstrated above, the RISM-
polaron theory reveals the behavior of a thermalized pos-
itron at high fluid density, where the convergence of the
PIMC simulations is extremely slow.

The behavior of the positron in xenon [1] is quite simi-
lar to that of an excess electron [3] because they share the
same long-range attractive particle-solvent interaction.
We have also applied the method presented here to an ex-
cess electron in xenon [20], employing the same electron-
xenon potential that Coker, Berne, and Thirumalai used
in their path-integral Monte Carlo studies [3]. We found
that the predictions from the RISM-polaron theory are
good, particularly for the electron-xenon pair distribution
at high fluid densities [20]. Thus our results at high den-
sities reported in this paper can be considered as a good
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supplement to the PIMC calculations made only for fluid
densities p*=0.01, 0.05, 0.15, and 0.5 at T=340 K [1].

The interaction potential (7) is a smooth function with
a strong repulsive core and an attractive tail, and it
would be interesting to see the roles played in positron lo-
calization by each of the two components taken separate-
ly. Here, for the sake of comparison, we ignored the at-
tractive polarization component and repeated the calcu-
lations as we did for the complete potential. As above,
we obtained the corresponding P and g(7), which have
been plotted in Figs. 2 and 5, respectively. From Fig. 2
we see that removal of the attractive tail leads to a shift
of the most compressed state of the positron polymer to a
much higher density, accompanied by an increase in the
amount of compression. Figure 5 clearly shows that g (7)
undergoes significant changes. For example, the xenon
cluster formation has disappeared. It seems apparent
that the repulsive potential is responsible for the
compression of the positron polymer, and the attractive
part for the fluid atom clustering. We can also see that
g(r) at p*=0.80 in Figs. 3 and 5 are almost identical,
which implies that g (r) becomes less sensitive to the at-
tractive potential when the fluid density is increased well
above its critical value. This is not the case for the
compression of the positron polymer (see Fig. 2). Since
the positron decay rate A largely depends on g(r), its
behavior reflects the nature of the attractive potential. In
contrast, the momentum of the positron is largely related
to the positron polymer compression [21], which depends
on the repulsive potential. Even if the attractive part
changes its dependence on the fluid density, we expect
that the angular correlation of the annihilation photons,
which depends on the momentum distribution of the pos-
itron, strongly reflects the nature of the repulsive poten-
tial.

We have seen that the RISM-polaron theory poorly
reproduces PIMC results at low solvent density, and thus
fails to correctly predict the behavior of localization of
light particles on density fluctuations as revealed by
PIMC calculations [1,3,22]. Chandler, Singh, and
Richardson pointed out the problem in their first RISM-

1.2

a(n

r(A)

FIG. 5. The plot of g (r) for various fluid densities at T =340
K from a RISM-polaron calculation using only the repulsive
potential [the first term in (7)].
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polaron paper and attributed it to the polaron approxi-
mation, which ignores large amplitude fluctuations [6(a)].
It would be interesting to explore a better approximation,
but what we consider here is that the type of closure may
also be an important issue. In practice, the functional
F[h(r)] in (2) must be approximated. The selection of a
closure which is best for RISM-polaron theory and for a
specific system needs to be justified, and is an indepen-
dent problem in the theory of light particle localization.
To explore the effect of varying the closure, we also tried
the PY closure

c(r)={exp[—BV(r)]—1}[1+h(r)—c(n)], (20)

but we failed to achieve convergence for the given poten-
tial (7). The reason is far from clear to us. We also tried
a closure analogous to Alnatt’s modification of the PY
closure [23], in which the short- and long-range parts of
c(r) and v (r) are treated in a similar manner to our treat-
ment of HNC closure presented in Sec. II.

c,(r)=exp[ =BV (r)+{c,)][1+6(r)]
—{¢;)—6(r)—1. (21)

This is just a linear version of the HNC closure (8) if 6(r)
is small. However, the linearization leads to dependence
on the manner in which the potential (7) is decomposed
into short- and long-range components, whereas the
HNC closure (8) allows arbitrary decomposition; whatev-
er decomposition is convenient generates the same result.
We tried two methods for decomposing the potential (7)
for the PY closure (21). One is identical in form to that
given earlier with the HNC closure, and the other is

—af{l—exp[—(r/ry)®1} /2r%, r>r,
ViD= _af1—expl—(r,, /ro)1} /205, r<r,

(22)
Vi(r)=V(r)—V(r),

where r,, is the place at which the polarization term in
potential (7) attains its minimum value. We do get con-
vergence for the closure with each choice of decomposi-
tion, but the results are very far from the Monte Carlo
calculations. For example, there is no strong peak in
g(r). Although a better choice of decomposition may ex-
ist, so far we have not recognized the possibility of get-
ting better results from the PY closure (21). A final re-
mark regarding decomposition of the potential into
short- and long-range components is that each selection
effectively redefines the PY closure. The HNC closure
seems the best closure available for our system at present.

It is worth pointing out that, so far, only the two-body
polarization of xenon atoms has been considered in con-
structing the particle-solvent interaction for a positron in
xenon. The interaction would be different if the many-
body polarization effects were included. Many-body po-
larization has been shown to be extremely important in
describing the behavior of an excess electron in fluid xe-
non [22,24]. It would be interesting to examine their
effect on positron annihilation as well. We are consider-
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ing this problem for future work.

In summary, RISM-polaron theory provides a good
foundation for the description of positron localization
and annihilation in xenon. It has improved our under-
standing of the positron’s behavior and its dependence on
the positron-xenon interaction. But, in practice, one
must be cautious in interpreting the quantitative predic-
tions because the theory underestimates the strength of
positron localization in xenon and therefore could benefit
from some improvements.
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